Programme Specification
MEng (Hons) Automotive Materials
Academic Year: 2019/20
This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.
This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our .
This specification should be read in conjunction with:
- Reg. XX (Undergraduate Awards) (see
- Module Specifications
- Summary
- Aims
- Learning outcomes
- Structure
- Progression & weighting
Programme summary
Awarding body/institution | 天堂视频 |
Teaching institution (if different) | |
Owning school/department | Department of Materials |
Details of accreditation by a professional/statutory body | Institute of Materials, Minerals and Mining |
Final award | MEng/MEng + DIS /MEng + DIntS / MEng + DPS |
Programme title | Automotive Materials |
Programme code | MPUM02 |
Length of programme | The duration of the programme is either 6 semesters, or 8 semesters if students undertake industrial training leading to the additional award of the Diploma in Industrial Studies, Diploma in Professional Studies, or study at a University abroad leading to the award of the Diploma in International Studies. These occur between Part B and Part C. |
UCAS code | J552, J553 |
Admissions criteria | MEng - MEng + DIS/DIntS/DPS - |
Date at which the programme specification was published | Mon, 06 Jan 2020 11:19:47 GMT |
1. Programme Aims
- To provide an accredited honours degree programme in the field of automotive materials engineering which satisfies the needs of industry for graduates of outstanding ability who have a very strong academic background with especially outstanding business and interactive skills.
- Greater in-depth knowledge of materials engineering will be included compared with the B.Eng counterpart programme and we aim to graduate high calibre materials engineers equipped with skills required to play a leading, technical role at an executive level in the automotive industry.
- To encourage students to manage their own learning, communicate effectively and make use of primary source materials.
2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:
- QAA Framework for Higher Education Qualifications
- QAA Benchmark Statements for Materials
- Institute of Materials, Minerals and Mining Guidelines for Accreditation
3. Programme Learning Outcomes
3.1 Knowledge and Understanding
On successful completion of the programmes, graduates should be able to demonstrate knowledge and understanding of:
- Relevant mathematical methods and principles of materials science as applied to materials engineering;
- A number of specialist materials topics connected with metals, ceramics, polymers, composites and automotive materials;
- The role of information technology in providing support for automotive materials engineers;
- Engineering principles relevant to materials selection;
- The materials and engineering aspects of vehicle design;
- The professional and engineering responsibilities of materials engineers;
- A systematic understanding of knowledge, and a critical awareness of current problems and/or new insights, much of which is at the forefront of automotive materials engineering practice.
3.2 Skills and other attributes
a. Subject-specific cognitive skills:
On successful completion of this programme students should be able to:
- Select and identify an appropriate material and manufacturing route for the design of a component;
- Utilise materials engineering principles to develop new materials/processing routes for improved performance of automotive engineering systems;
- Solve automotive materials engineering problems, and, where appropriate, propose new hypotheses;
- Select and apply appropriate IT tools to a variety of automotive materials problems;
- Analyse systems, processes, and components;
- Select materials from an environmentally appreciative viewpoint;
- Interpret numerical data and apply mathematical methods to the analysis of automotive materials engineering problems;
- Develop the materials engineering skills to optimise manufacturing efficiency for automotive products.
b. Subject-specific practical skills:
On successful completion of the programmes, students should be able to:
- Use, and have a comprehensive understanding of, appropriate mechanical testing, corrosion testing, optical and electron metallographic, and chemical analysis methods for the study of materials;
- Manipulate systems for the processing of polymers, ceramics, metals and composites;
- Use appropriate computer software for design and modelling exercises;
- Evaluate and present practical data in a format that shows originality in the application of knowledge, together with a practical understanding of how established techniques are used to create and interpret automotive materials engineering knowledge;
- Explain experimental results in terms of theoretical mechanisms and concepts;
- Research for information;
- Demonstrate project management skills.
c. Key transferable skills:
On successful completion of the programmes, students should be able to:
- Organise and manage time and resources effectively;
- Apply constructive, creative, and structured approaches to complex problem solving;
- Exercise the independent learning ability required for continuing professional development;
- Make decisions in complex and unpredictable situations.
- Work effectively, both as part of a team and/or independently;
- Organise and manage time and resources effectively; for short-term and longer-term commitments;
- Possess skills needed to communicate effectively through written, graphical, inter-personal, and presentation media;
- Demonstrate a high level of numeracy; appropriate to the cognitive skills required;
- Understand the operational and strategic issues involved with the automotive industry;
- Compile clear and well-structured technical reports;
- To plan, monitor and record personal, educational and career development issues using the fast track route towards chartered status.
4. Programme structure
4.1 Part A – Introductory Modules
4.1.1 Compulsory modules (total module weight 120)
For Students entering Part A from 2018
Code |
Semester |
Title |
Modular Weight |
MPA201 |
1 |
Introductory Materials Science |
10 |
MPA202 |
1 and 2 |
Experimentation and Practical Skills |
20 |
MPA203 |
1 |
CAD and Engineering Drawing |
10 |
MPA204 |
2 |
Engineering Analysis and Modelling |
10 |
MPA205 |
1 |
Thermodynamics and Phase Equilibria |
10 |
MPA321 |
2 |
Introduction to Materials Processing |
10 |
MPA207 |
2 |
Mechanics for Materials 1 |
10 |
MPA210 |
1 |
Introduction to Product Design |
10 |
MAA101 |
1 |
Mathematics for Materials 1 |
10 |
MAA201 |
2 |
Mathematics for Materials 2 |
10 |
MPA322 |
2 |
Materials Applications |
10 |
For students entering Part A before 2018 and after 2014
Code |
Semester |
Title |
Modular Weight |
MPA201 |
1 |
Structure and Properties of Materials |
10 |
MPA202 |
1 and 2 |
Experimentation and Practical Skills |
20 |
MPA203 |
1 and 2 |
CAD and Engineering Drawing |
10 |
MPA204 |
1 and 2 |
Engineering Analysis |
10 |
MPA205 |
1 |
Thermodynamics and Phase Equilibria |
10 |
MPA206 |
2 |
Introduction to Metal Processing |
10 |
MPA207 |
2 |
Mechanics for Materials 1 |
10 |
MPA210 |
1 |
Introduction to Product Design |
10 |
MAA101 |
1 |
Mathematics for Materials 1 |
10 |
MAA201 |
2 |
Mathematics for Materials 2 |
10 |
TTA107 |
1 |
Vehicle Design and Development |
10 |
4.2 Part B – Degree Modules
4.2.1 Compulsory modules (total module weight 120)
For students entering Part A from 2018 onwards
Code |
Semester |
Title |
Modular Weight |
MPB209 |
2 |
Materials Characterisation |
10 |
CGB018 |
2 |
Plant Engineering |
10 |
MPB312 |
1 and 2 |
Materials Processing |
30 |
MPB313 |
1 |
Materials in Service |
10 |
MPB208 |
2 |
Fracture Mechanics of Materials |
10 |
MAB101 |
1 |
Maths for Materials 3 |
10 |
MAB205 |
2 |
Statistics |
10 |
TTB107 |
2 |
Vehicle Loading and Suspensions |
10 |
TTB207 |
1 |
Machine Elements and Automative Materials |
10 |
TTA107 | 1 |
Vehicle Design and Development |
10 |
For students entering Part A from 2014 and before 2018
Code |
Semester |
Title |
Modular Weight |
MPB201 |
1 |
Structures and Properties of Polymers |
10 |
MPB203 |
2 |
Polymers: Processing |
10 |
MPB204 |
1 |
Ceramics: Processing and Properties |
10 |
MPB205 |
1 and 2 |
Experimental Skills |
10 |
MPB206 |
1 |
Engineering Alloys |
10 |
MPB208 |
2 |
Fracture Mechanics of Materials |
10 |
CGB018 |
2 |
Plant Engineering |
10 |
MAB101 |
1 |
Mathematics for Materials 3 |
10 |
MAB206 |
2 |
Statistics |
10 |
TTB107 |
2 |
Vehicle Loading and Suspensions |
10 |
TTB110 |
1 |
Internal Combustion Engines |
10 |
4.3 Part I – Diploma in Industrial Studies and Diploma in International Studies Modules
Code |
Semester |
Title |
Modular Weight |
MPI001 |
1 and 2 |
Industrial Training Placement (DIS, non-credit bearing) |
120 |
MPI002 |
1 and 2 |
Overseas University Placement (DIntS, non-credit bearing |
120 |
MPI003 |
1 and 2 |
Diploma in Professional Studies (DPS, non-credit bearing) |
120 |
4.3.1 Ten Semester Programme
In accordance with Regulation XI, students can undertake a placement, leading to the additional award of the Diploma in Industrial Studies or Diploma in Professional Studies, or if taken at a University overseas the Diploma in International Studies.
Participation in a placement, or study abroad, is subject to Departmental approval and satisfactory academic performance in Parts A and B (and depending upon the route of study Part C).
4.4 Part C – Degree Modules
4.4.1 Compulsory modules (total module weight 110)
For students entering Part A from 2018 onwards
Code |
Semester |
Title |
Modular Weight |
MPC311 |
1 |
Advanced Processing Methods |
10 |
MPC321 |
2 |
Functional Materials |
10 |
MPC108 |
1 |
Surface Engineering |
10 |
MPC114 |
2 |
Composite Materials |
10 |
MPC120 |
1 and 2 |
Vehicle and Component Design |
20 |
MPC123 |
1 |
Automotive Crash Protection |
10 |
MPD110 |
1 and 2 |
Masters Project |
40 |
Additional modules (optional). Choose 10 credits from:
Code |
Semester |
Title |
Modular Weight |
BSD523 |
1 |
Entrepreneurship and Innovation |
10 |
MPB311 | 1 |
Materials Modelling |
10 |
BSC144 |
2 |
Project Management |
10 |
LAN--- |
1 and 2 |
Language - with approval of the Programme Director in semester 1 or 2 |
10 |
|
|
Other Level 6 module from the University module catalogue with agreement of the Programme Director |
10 |
For students entering Part A from 2014 and before 2018
Code |
Semester |
Title |
Modular Weight |
MPC101 |
1 |
Sustainability, Recycling and Environmental Issues |
10 |
MPC106 |
2 |
Electrochemical Technology |
10 |
MPC108 |
1 |
Surface Engineering |
10 |
MPC114 |
2 |
Composite Materials |
10 |
MPC120 |
1 and 2 |
Vehicle and Component Design |
20 |
MPC123 |
1 |
Automotive Crash Protection |
10 |
MPD110 |
1 and 2 |
Masters Project |
40 |
BSC144 |
2 |
Project Management |
10 |
4.5 Part D – Degree Modules
4.5.1 100 compulsory core modules
For students entering Part A from 2018
Code |
Semester |
Title |
Modular Weight |
MPD101 |
1 and 2 |
Group Design Project |
50 |
MPD322 |
2 |
Elasticity |
10 |
MPP551 |
1 |
Advanced Characterisation Techniques |
15 |
MPP556 |
2 |
Materials Modelling |
15 |
MPD321 |
2 |
Energy Materials |
10 |
TTC064 |
2 |
Vehicle Engine Analysis |
10 |
Aditional optional module(s). Students should choose 10 credits from the options below.
Code |
Semester |
Title |
Modular Weight |
LAN--- |
1 or 2 |
Language |
10 |
BSC522 |
1 |
Entrepreneurship and Innovation |
10 |
WSC206 |
2 |
Product Innovation Management |
10 |
MPD102 |
1 |
Industrial Case Studies |
10 |
MPD014 |
1 |
Polymer Engineering - Properties and Design |
10 |
MPD105 |
1 |
Advanced Materials Dissertation |
10 |
--- |
1 and 2 |
Level 7 module(s) from the University module catalogue |
10
|
For students entering Part A from 2014 and before 2018 (Total module weight 100)
Code |
Semester |
Title |
Modular Weight |
MPD101 |
1 and 2 |
Group Design Project |
50 |
MPD102 |
2 |
Industrial Case Studies |
10 |
MPP551 |
1 |
Advanced Characterisation Techniques |
15 |
MPP556 |
2 |
Materials Modelling |
15 |
TTC064 |
2 |
Vehicle Engine Analysis |
10 |
Additional optional module(s). Students commencing studies before 2014 should choose 10 credits from the options below and students commencing studies from 2014 onwards should choose 20 credits from the options below.
Code |
Semester |
Title |
Modular Weight |
LAN--- |
1 or 2 |
Language |
10 |
WSC204 |
2 |
Management of the Human Resource |
10 |
WSC206 |
2 |
Product Innovation Management |
10 |
WSC910 |
1 |
Laser Processing of Materials |
10 |
MPD014 |
1 |
Polymer Engineering - Properties and Design |
10 |
MPD105 |
1 |
Advanced Materials Dissertation |
10 |
--- |
1 and 2 |
Level 7 module(s) from the University module catalogue |
10 |
5. Criteria for Progression and Degree Award
5.1 Criteria for Progression and Degree Award
In order to progress from Part A to Part B, from Part B to C and from C to D and to be eligible for the award of an extended Honours degree, candidates must not only satisfy the minimum credit requirements set out in Regulation XX but also:
- In order to progress in each Part students must accumulate 120 credits together with an overall average of 55% for the Part.
5.2 Re-assessment
- Provision will be made in accordance with Regulation XX for candidates, who have the right of re-assessment in all parts of the programme, to undergo re-assessment in the University's Special Assessment Period (except where SAP-exempt modules are involved).
- Where a candidate has accumulated fewer than 60 credits in a part of the programme, reassessment in the relevant part is not available to that candidate in the Special Assessment Period.
5.3 Criteria for candidates who do not receive permission to Progress or gain the award of a Degree
5.3.1 Any candidate who fails to achieve the criteria for progression from Part A to Part B shall have the opportunity to repeat Module Assessments in accordance with the provisions of Regulation XX in order to qualify to progress to Part B. Alternatively, the candidate registered on the MEng degree programme may elect to enter part B of the BEng degree programme in Automotive Materials provided that the candidate has achieved the criteria for progression required for that programme. Failure at re-assessment will not prejudice this permission to enter the BEng degree programme subsequently.
5.3.2 Any candidate who fails to achieve the criteria for progression from Part B to Part C shall have the opportunity to repeat Module Assessments in accordance with the provisions of Regulation XX in order to qualify to progress to Part C. Alternatively, the candidate registered on the MEng degree programme may elect to enter Part C of the BEng degree programme in Automotive Materials provided that the candidate has achieved the criteria for progression required for that programme. Failure at re-assessment will not prejudice this permission to enter the BEng degree programme subsequently.
5.3.3 Any candidate who fails to achieve the criteria for progression from Part C to Part D shall have the opportunity to repeat Module Assessments in accordance with the provisions of Regulation XX in order to qualify to progress to Part D. Any candidate who
(i) fails to meet the progression requirement to Part D after reassessment, or
(ii) having successfully completed Part C is unable to commence or complete Part D, or
(iii) having studied Part D fails to meet the requirements for the award of an MEng degree,
may be permitted, at the discretion of the Programme Board to register for those additional modules necessary to satisfy the regulations for the award of the degree of BEng in Automotive Materials. In such instances, the degree classification will correspond to the candidate’s achievements in Part B and C assessments and be determined on the basis of the weighting given for the BEng programme.
6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification
Candidate’s final degree classification will be determined on the basis of their performance in degree level Module Assessments in Parts B, C, and D in accordance with the scheme set out in Regulation XX. The average percentages for each Part will be combined in the ratio Part B 20 : Part C 40 : Part D 40 to determine the overall average percentage mark for the programme (the programme mark).