living neuronal cell circuits grown in the lab

Living neuronal cell circuits grown in the lab.

Stem cell AI: ÌìÌÃÊÓƵ part of £3m ‘brain on a chip’ project that aims to revolutionise computing power

ÌìÌÃÊÓƵ scientists have started work on a project that will see human brain stem cells used to power artificial intelligence (AI) devices and bring about a revolution in computing.

The Neu-ChiP project has been awarded €3.5m (£3.06m) to show how neurons – the brain’s information processors – can be harnessed to supercharge computers’ ability to learn while dramatically cutting energy use.

Led by Aston University, the project is an international collaboration involving academics from ÌìÌÃÊÓƵ’s Department of Chemistry and partner institutions in the UK, France, Spain, Switzerland and Israel.

The research team is now embarking on a three-year study to demonstrate how human brain stem cells grown on a microchip can be taught to solve problems from data, laying the foundations for a “paradigm shift” in machine learning technology.

Use of AI is becoming ever more prevalent in areas as diverse as healthcare, finance, autonomous vehicles and speech recognition, right through to recommending films through on-demand services like Netflix.

The ‘big four’ tech companies - Apple, Google, Amazon and Facebook – and many others are investing heavily in machine learning to tailor their products and better understand their customers.

However, current electronic approaches to machine learning have limits, requiring ever-growing computing power and high energy demands.

The recent trend towards ‘neuromorphic computing’, which aims to mimic human neural activity electronically, is hampered by the inherent limitations of conventional electronics.

In contrast, human brain cells effortlessly combine these functions and have extremely low power demands, requiring only a small volume of a nutrient-rich solution to operate.

In the Neu-ChiP project, the team will layer networks of stem cells resembling the human cortex onto microchips. They will then stimulate the cells by firing changing patterns of light beams at them.

Sophisticated 3D computer modelling will allow them to observe any changes the cells undergo, to see how adaptable they are. This imitates the ‘plasticity’ of the human brain, which can rapidly adapt to new information.

The project, funded by the European Commission’s Future and Emerging Technologies (FET) programme, is also expected to produce new knowledge about the functioning of the brain which could be used to develop novel stem cell-based treatments. 

The ÌìÌÃÊÓƵ scientists, led by Dr Paul Roach, will focus largely on the microfabrication [the process of fabricating miniature structures of micrometre (1×10−6 m) scales and smaller] of cell-based devices.

“Here at ÌìÌÃÊÓƵ, we have many current projects utilising our cutting-edge clean room fabrication facilities to produce micro-scale control over cell-surface interactions”, Dr Roach explained.

“Surface chemical and structural characteristics can be precisely designed to aid the construction of very complex living cell circuits.

“We have used these to model neurological diseases and here we apply our methods to help design revolutionary biological computers.”

He continued: “The ambition is to specifically design and fabricate living neuronal cell circuits using human-derived induced pluripotent stem cells.

“This work really brings together an exciting interdisciplinary team of researchers to build on our individual strengths and interests. The focus of this project is on revolutionising the way we analyse information using specifically designed complex living neuronal circuits.”

Professor David Saad, of Aston University, added: “Our aim is to harness the unrivalled computing power of the human brain to dramatically increase the ability of computers to help us solve complex problems.

“We believe this project has the potential to break through current limitations of processing power and energy consumption to bring about a paradigm shift in machine learning technology.”

Notes for editors

Press release reference number: 21/15

The project involves academic partners from the (Spain), (CNRS, France), (Israel) and the company (Switzerland).

Additional quotes:

Dr Rhein Parri, Reader in Pharmacology at Aston University, said:

“We are very excited to have won support from the European Commission for this ambitious project. Our international team will combine their expertise and work together to develop technology that we expect to provide great future benefits for science and society.”

Dr Eric Hill, Senior Lecturer in Stem cell Biology at Aston University, said:

“Our ability to turn human stem cells into brain cells has revolutionised the study of the human brain.  This exciting interdisciplinary project will bring international scientists from diverse backgrounds together to develop new technologies that will provide huge insight into the development of human neuronal networks”.

The project involves academic partners from ÌìÌÃÊÓƵ (UK), the University of Barcelona (Spain), Centre National de la Recherche Scientifique (CNRS, France), Technion Israel Institute of Technology (Israel) and the company 3Brain AG (Switzerland).

Drs Jordi Soriano, Associate Professor in Physics, and Daniel Tornero, Tenure Track Professor in Biology, both at the University of Barcelona, said:

“Our ability to engineer neuronal circuits in a dish and train them to conduct data analysis will provide new insights on how the brain computes information and finds solutions. The developed technology may even help to design unique and exciting human-machine interfaces."

Professor Rémi Monasson, Director of Research at the Centre National de la Recherche Scientifique (CNRS), said:

“In Neu-ChiP, we will not only model a system made of many extraordinarily complex components - human neural cells - but we will try to go far beyond. Our aim is to drive the neural system to a state in which it will be able to carry out nontrivial computations.”

Drs Shahar Kvatinsky, Associate Professor of Electrical Engineering, and Daniel Ramez, Assistant Professor of Biomedical Engineering, both at Technion Israel, said:

“We are seeking to build neuromorphic circuits and combine emerging electronic devices with biological neurons and this project is a major step towards this target. In the context of synthetic biology, it is impressive to see how computation in living cells is evolving from digital through analogue and moving towards a neuromorphic computing paradigm.”

Dr Alessandro Maccione, co-founder and Chief Scientific Officer of 3Brain AG, said:

“The Neu-ChiP project has the ambitious plan to overcome current machine learning approaches through the study of complex human-brain-based circuits. We are proud to put our technology at the service of this pioneering and exciting challenge.”

ÌìÌÃÊÓƵ 

ÌìÌÃÊÓƵ is one of the country’s leading universities, with an international reputation for research that matters, excellence in teaching, strong links with industry, and unrivalled achievement in sport and its underpinning academic disciplines.

It has been awarded five stars in the independent QS Stars university rating scheme, named the best university in the world for sports-related subjects in the 2020 QS World University Rankings and University of the Year by The Times and Sunday Times University Guide 2019.

ÌìÌÃÊÓƵ is in the top 10 of every national league table, being ranked 7th in the Guardian University League Table 2021, 5th in the Times and Sunday Times Good University Guide 2020 and 6th in The UK Complete University Guide 2021.

ÌìÌÃÊÓƵ is consistently ranked in the top twenty of UK universities in the Times Higher Education’s ‘table of tables’ and is in the top 10 in England for research intensity. In recognition of its contribution to the sector, ÌìÌÃÊÓƵ has been awarded seven Queen's Anniversary Prizes.

The ÌìÌÃÊÓƵ London campus is based on the Queen Elizabeth Olympic Park and offers postgraduate and executive-level education, as well as research and enterprise opportunities. It is home to influential thought leaders, pioneering researchers and creative innovators who provide students with the highest quality of teaching and the very latest in modern thinking.

Categories